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J. Phys. A: Math. Gen. 14 (1981) L229-L233. Printed in Great Britain 

LE’ITER TO THE EDITOR 

Stability of the Minkowski vacuum in the renormalised 
semiclassical theory of gravity 

S Randjbar-Daemit 
Imperial College, Blackett Laboratory, London SW7 2BZ, England 

Received 21 April 1981 

Abstract. By making use of the dimensional regularisation and renormalisation group 
arguments we show that the conclusion of Horowitz with regard to the instability of flat 
space-time in the semiclassical theory of gravity also holds for the coupling of a massive real 
scalar quantum field to the classical gravity g,,, but only on condition that the mass of the 
field is not too large. 

The semiclassical theory of gravity is defined to be a theory in which all physical fields 
are quantised except for the gravity whose dynamics is governed by the Einstein field 
equation 

Here gB1 is the ‘bare’ Newtonian coupling constant, GcLy(x) = RFLY(x) -3gWY(x)R(x) is 
the Einstein tensor constructed from the classical metric tensor g,, and ($I f f i cLy(x ) I$ )  is 
the expectation value of the stress tensor of the quantised fields in the normalised state 

In a recent paper Horowitz (1980, 1981) has shown that if one couples a massless 
quantum field to classical gravity via equations (1) and assumes that the observed 
cosmological constant is zero then the infinitesimal perturbations of the Minkowski 
ground state ( T ~ ~ ;  10, in)) will not be oscillatory about this constant solution but will 
grow exponentially in time. His result is based on an indirect evaluation of the 
regularised (0, inlfwY(x)lO, in) from a set of five plausible axioms. 

In this letter we apply the scheme of dimensional regularisation to the coupling of a 
massive real scalar field 6 to the classical gravity. Then, in addition to recovering the 
results of Horowitz in the massless limit, we prove that by imposing a positivity 
condition on the renormalised coupling of the R,,,R”” term one ma retain stability but 
only for masses well above the Planck mass! The addition of a J G R 4 .  term to the 
Lagrangian puts strict lower and upper bounds on the scalar field mass beyond which 
the theory becomes unstable. However these bounds-being of the order of Planck 
mass-are too high to be acceptable for realistic physical fields. 

To start let us assume that the dynamics of f is governed by 

I*). 

t At present at the International Centre for Theoretical Physics, Trieste, Italy. 
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The Heisenberg picture f , , ( x )  is formally given by 

f,” ( x )  = -a,$ (x)a ,$  ( x )  + 4g,, ( x ) ( g * ” ( x ) a , $ ( x ) a d  ( x )  + P2$’(X)) .  (3) 

In a previous paper (Kibble and Randjbar-Daemi 1980) we have given a variational 
principle which yields the Schrodinger picture version of the system (1) and (2). This 
action integral may be generalised to include the higher-order terms G R  and 
~ g R , , R + ”  which will be induced by the requirement of renormalisation. Let us 
consider the action integral 

w(g,,, I$)) = on/2 5 d ” x J q { A e  + geR + AeR2 + YBR,,R + w+ 

where B stands for ‘bare’ and in anticipation of the dimensional regularisation scheme 
which we are going to employ we carry out all of our calculations in an n-dimensional 
Riemannian manifold. It is only after the renormalisation of the theory that we 
continue back to the physical four-dimensional pseudo-Riemannian manifold with the 
signature (-, +, +, +). W, stands for the action of the matter fields (Kibble and 
Randj bar-Daemi 1980). 

One can develop a perturbative scheme to evaluate the diagonal matrix elements of 
(3) in any normalisable state 1 1 ) ) .  This and the other details of the calculation will be 
presented elsewhere. Here we only give the results of a relatively long calculation for 
the choice 10, in) of the quantum state I$) and the linearised g,, = T,, + h,,. We shall 
neglect any term higher than the first order in h,,. Also, since we are investigating the 
stability of the solutions discussed by Horowitz (1980, 1981) we shall set h = ~*’h,,, = 
0. Then in the harmonic gauge a,(Gg””) = 0 the scalar curvature R = 0 and the Ricci 
tensor is given by R,, = -28 h,,,. Upon insertion of h ( x )  = 0 in the regularised 
(0, in / f , , (x ) lO ,  in) we obtain 

(4) 
1 

1 2  

1 m-2E 
(0, inlf , , (x) lO,  in)‘eg=- ~ 

& (47r)n’2 

where E = 2 -in and the function q5,,(x) becomes finite as E + 0. Here m is an arbitrary 
unit of mass such that pB = p R m .  Since one does not need a 42  counter term, the bare 
mass pB is already finite. Thus we drop the suffix B from pg. The dimensionless pR has 
been introduced only for later convenience. However, in order to discuss the scaling 
properties of the renormalised theory under variations of the scale of mass it is essential 
to introduce the unit of mass m (’t Hooft 1973). 

Let us insert the above (0, inlf , , (x) lO,  in)  into the linearised Einstein equation 
S W/Sg’”” = 0, with W given as in (4). We get 

3111~ + i ( 1  + 5 & ) ( p 4 - 2 “ / ~ ) ] g , v ( x )  

We have argued elsewhere (Randjbar-Daemi et a1 1980) that in a semiclassical field 
theory one may employ the dynamics of the classical field to remove the finite 
renormalisation ambiguity of the physical parameters. For instance if one demands-as 
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we shall do-that an initial state comprising g,, = qw, and I+) = 10, in) will remain the 
same, then one must have 

hB++(1 + 4 E ) ( p 4 - 2 " / & )  =o. (7) 

Let us also introduce the dimensionless renormalised parameters gR and yR through the 
following definitions 

Of course these definitions are an expression of the minimal subtraction scheme. The 
fact that the bare parameters pB, g B  and YB are independent of the unit of mass m forces 
pR, gR and yR to depend on m, such that if one introduces a scaling parameter s through 
m = mo exp(s) then the renormalised parameters must satisfy the following 'p -  
function' equations 

= +1 
as 60' 

These equations guarantee that the change in the scale of m does not alter the 
prescription of the minimal subtraction. We shall shortly prove that the same equations 
ensure the scale independence of the renormalised linearised Einstein equations. 

One can of course easily integrate the system (9) to obtain 

After substitution from equations (8) into equation (6) we continue back to the 
four-dimensional physical space to obtain (assuming that not all of h,, = 0) the 
following Fourier space equation 

where since we are interested in the stability question we have already assumed that 
q2  3 0. The coefficients A, B and C are given by 

The right-hand side of equation (11) is manifestly independent of m, whereas the 
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The number gR(0)mg must of course be related to the Newtonian constant CN, e.g. 
gR(0)mg = CG1. The parameter ~ ~ ( 0 )  on the other hand is absolutely arbitrary. In what 
follows we shall show that if 0 C p ~ ( 0 )  < e 2  then no finite value of ~ ~ ( 0 )  can eliminate 
the solutions q 2 a 0  of equation (11). However if p R ( 0 ) 2 e  then for yR(0)>O the 
solution q2 > 0 will be absent (here e = 2.718 . . ,). 

Let us first investigate the case of pR(0) = 0. In this limit B = 4m;gR(0) and C = 0. 
The coefficient A on the other hand involves the term --A lg p ~ ( 0 )  which will give rise to 
-&q2 lg pR(0) on the LHS of equation (11). A close investigation of the RHS of equation 
(11) reveals that a similar factor is also contained in the RHS of this equation. Thus as 
pR(0) + 0 equation (1 1) reduces to 

2 

ax + b = x Ig x (14) 

where 

x = mi2q2 (15a) 
U = 30(-4yR(O) + 46/450) (15b) 

b = 120g~(O)mg. (15c) 

For a > 0 one may make the solution x go to infinity by choosing YR(O) to be very large 
and negative. This will correspond to a large value of q 2  and the instability will bencome 
a short-range phenomenon. However, for those negative a for which ~ ~ ( 0 )  is large and 
positive the solution x will be small and therefore the instability will become a 
long-distance phenomenon. This confirms the results obtained by Horowitz for the 
massless case. 

Now let us consider the case of p ~ ( 0 )  # 0. The RHS of equation (11) is always 
positive and an increasing function of q2. Its value at q2 = 0 is n p  and its derivative at 
this point is pjp e (To check these statements it is convenient to introduce a new 
variable x through the definition (q2)'l2 = 2p sinh x. Then the RHS of (11) can be 
written as %p4x cosh5x/sinh x.) The value of the LHS of (11) at q2 = 0 is also ~p . 
However, its slope at this point depends on the sign of B and its subsequent behaviour 
depends on the sign of A. The sign of B depends on the value of pR(0) and as is evident 
from equation (13b) all values of pR(0) G 1 will make B positive. Thus for all masses 
below the Planck mass mo there will always be solutions for q2 > 0 whatever the sign of 
A. If we set 4gR(0) = 1 then pR(0) must roughly be e2 in order for B to be negative. In 
this case equation (13a) indicates that any ~ ~ ( 0 )  2 0 will make A negative. Therefore 
one obtains the qualitative behaviour of either side of equation (1 1) as shown in figure 1. 
The inclusion of ( ~ V ) - " / ~ J  d"xcg@&$2 with 5 = (2 - n)/4(n - 1) in the action integral 
(4) leaves A and C the same as in equation (13) but modifies the values of B as follows: 

16 4 

28 2 

16 4 

Bmodified=4mggR(0)+ 10pi(O)mg Ig pR(O)-TpR(O)m;. 13 
2 

Again if we set 4gR(0) = 1 then one can easily check that B is negative if p ~ ( 0 )  lies in the 
range By choosing the coefficient of GgRq5' different from < pR(0) < 
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RHS of eqvation I111 i 
/ 

LHS o f  equation ( 1 1 )  

Figure 1. The qualitative behaviour of equation (1 1) 
for pR(0)>e2 and - y R ( O ) 3 O ,  i.e. the range of no 
solution for equation (1 1). 

\ 
(2 - n ) / 4 ( n  - 1) one might be able to improve on this result. But then one loses other 
nice features. 

In addition to this undesirable feature of the semiclassical theory of gravity mention 
must also be made of the nonlinearity of quantum mechanics (Kibble 1981). This and 
the details of the calculations of the present paper will be discussed in a forthcoming 
paper (Randjbar-Daemi 198 1). 

I am indebted to Professor T W B Kibble and Dr A Namazi for reading the manuscript 
and making several helpful suggestions, to Professor Salam, the IAEA and UNESCO 
for hospitality at the International Centre for Theoretical Physics where part of this 
investigation has been carried out, and also to Dr B S Kay and Dr M J Duff for useful 
discussions. 
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